Panda Isnot Reading All of the Entries in Column Reading Csv File Python

27. Reading and Writing Data in Pandas

By Bernd Klein. Last modified: 01 Feb 2022.

All the powerful data structures like the Series and the DataFrames would avail to null, if the Pandas module wouldn't provide powerful functionalities for reading in and writing out information. Information technology is not only a matter of having a functions for interacting with files. To exist useful to data scientists it besides needs functions which back up the virtually important data formats like

  • Delimiter-separated files, like e.g. csv
  • Microsoft Excel files
  • HTML
  • XML
  • JSON

Delimiter-separated Values

Digits as File Input and Output

Most people take csv files equally a synonym for delimter-separated values files. They leave the fact out of account that csv is an acronym for "comma separated values", which is not the instance in many situations. Pandas besides uses "csv" and contexts, in which "dsv" would be more appropriate.

Delimiter-separated values (DSV) are defined and stored two-dimensional arrays (for example strings) of data by separating the values in each row with delimiter characters divers for this purpose. This way of implementing data is often used in combination of spreadsheet programs, which tin can read in and write out data as DSV. They are also used as a general information exchange format.

Nosotros call a text file a "delimited text file" if it contains text in DSV format.

For instance, the file dollar_euro.txt is a delimited text file and uses tabs (\t) as delimiters.

Reading CSV and DSV Files

Pandas offers two ways to read in CSV or DSV files to be precise:

  • DataFrame.from_csv
  • read_csv

There is no big divergence betwixt those two functions, e.g. they take different default values in some cases and read_csv has more than paramters. We will focus on read_csv, because DataFrame.from_csv is kept within Pandas for reasons of backwards compatibility.

              import              pandas              equally              pd              exchange_rates              =              pd              .              read_csv              (              "/data1/dollar_euro.txt"              ,              sep              =              "              \t              "              )              print              (              exchange_rates              )            

OUTPUT:

              Yr   Average  Min USD/EUR  Max USD/EUR  Working days 0   2016  0.901696     0.864379     0.959785           247 1   2015  0.901896     0.830358     0.947688           256 two   2014  0.753941     0.716692     0.823655           255 iii   2013  0.753234     0.723903     0.783208           255 4   2012  0.778848     0.743273     0.827198           256 5   2011  0.719219     0.671953     0.775855           257 6   2010  0.755883     0.686672     0.837381           258 7   2009  0.718968     0.661376     0.796495           256 8   2008  0.683499     0.625391     0.802568           256 9   2007  0.730754     0.672314     0.775615           255 10  2006  0.797153     0.750131     0.845594           255 11  2005  0.805097     0.740357     0.857118           257 12  2004  0.804828     0.733514     0.847314           259 13  2003  0.885766     0.791766     0.963670           255 14  2002  1.060945     0.953562     ane.165773           255 15  2001  one.117587     1.047669     one.192748           255 16  2000  ane.085899     0.962649     i.211827           255 17  1999  0.939475     0.848176     0.998502           261            

Equally we can see, read_csv used automatically the start line as the names for the columns. It is possible to give other names to the columns. For this purpose, we have to skip the starting time line by setting the parameter "header" to 0 and we have to assign a list with the column names to the parameter "names":

              import              pandas              every bit              pd              exchange_rates              =              pd              .              read_csv              (              "/data1/dollar_euro.txt"              ,              sep              =              "              \t              "              ,              header              =              0              ,              names              =              [              "year"              ,              "min"              ,              "max"              ,              "days"              ])              print              (              exchange_rates              )            

OUTPUT:

              yr       min       max  days 2016  0.901696  0.864379  0.959785   247 2015  0.901896  0.830358  0.947688   256 2014  0.753941  0.716692  0.823655   255 2013  0.753234  0.723903  0.783208   255 2012  0.778848  0.743273  0.827198   256 2011  0.719219  0.671953  0.775855   257 2010  0.755883  0.686672  0.837381   258 2009  0.718968  0.661376  0.796495   256 2008  0.683499  0.625391  0.802568   256 2007  0.730754  0.672314  0.775615   255 2006  0.797153  0.750131  0.845594   255 2005  0.805097  0.740357  0.857118   257 2004  0.804828  0.733514  0.847314   259 2003  0.885766  0.791766  0.963670   255 2002  ane.060945  0.953562  1.165773   255 2001  1.117587  1.047669  1.192748   255 2000  one.085899  0.962649  1.211827   255 1999  0.939475  0.848176  0.998502   261            

Exercise i

The file "countries_population.csv" is a csv file, containing the population numbers of all countries (July 2014). The delimiter of the file is a space and commas are used to split up groups of thousands in the numbers. The method 'head(due north)' of a DataFrame can be used to requite out only the get-go n rows or lines. Read the file into a DataFrame.

Solution:

              popular              =              pd              .              read_csv              (              "/data1/countries_population.csv"              ,              header              =              None              ,              names              =              [              "Land"              ,              "Population"              ],              index_col              =              0              ,              quotechar              =              "'"              ,              sep              =              " "              ,              thousands              =              ","              )              print              (              popular              .              head              (              5              ))            

OUTPUT:

              Population Country                    Prc           1355692576 India           1236344631 Eu   511434812 United States    318892103 Indonesia        253609643            

Writing csv Files

Writing CSV Files

We can create csv (or dsv) files with the method "to_csv". Before nosotros exercise this, we will prepare some data to output, which we will write to a file. We have two csv files with population information for various countries. countries_male_population.csv contains the figures of the male person populations and countries_female_population.csv correspondingly the numbers for the female populations. Nosotros will create a new csv file with the sum:

            column_names            =            [            "State"            ]            +            list            (            range            (            2002            ,            2013            ))            male_pop            =            pd            .            read_csv            (            "/data1/countries_male_population.csv"            ,            header            =            None            ,            index_col            =            0            ,            names            =            column_names            )            female_pop            =            pd            .            read_csv            (            "/data1/countries_female_population.csv"            ,            header            =            None            ,            index_col            =            0            ,            names            =            column_names            )            population            =            male_pop            +            female_pop          
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Country
Commonwealth of australia 19640979.0 19872646 20091504 20339759 20605488 21015042 21431781 21874920 22342398 22620554 22683573
Austria 8139310.0 8067289 8140122 8206524 8265925 8298923 8331930 8355260 8375290 8404252 8443018
Kingdom of belgium 10309725.0 10355844 10396421 10445852 10511382 10584534 10666866 10753080 10839905 10366843 11035958
Canada NaN 31361611 31372587 31989454 32299496 32649482 32927372 33327337 33334414 33927935 34492645
Czech republic 10269726.0 10203269 10211455 10220577 10251079 10287189 10381130 10467542 10506813 10532770 10505445
Kingdom of denmark 5368354.0 5383507 5397640 5411405 5427459 5447084 5475791 5511451 5534738 5560628 5580516
Finland 5194901.0 5206295 5219732 5236611 5255580 5276955 5300484 5326314 5351427 5375276 5401267
France 59337731.0 59630121 59900680 62518571 62998773 63392140 63753140 64366962 64716310 65129746 65394283
Germany 82440309.0 82536680 82531671 82500849 82437995 82314906 82217837 82002356 81802257 81751602 81843743
Greece 10988000.0 11006377 11040650 11082751 11125179 11171740 11213785 11260402 11305118 11309885 11290067
Hungary 10174853.0 10142362 10116742 10097549 10076581 10066158 10045401 10030975 10014324 9985722 9957731
Republic of iceland 286575.0 288471 290570 293577 299891 307672 315459 319368 317630 318452 319575
Ireland 3882683.0 3963636 4027732 4109173 4209019 4239848 4401335 4450030 4467854 4569864 4582769
Italy 56993742.0 57321070 57888245 58462375 58751711 59131287 59619290 60045068 60340328 60626442 60820696
Japan 127291000.0 127435000 127620000 127687000 127767994 127770000 127771000 127692000 127510000 128057000 127799000
Korea 47639618.0 47925318 48082163 48138077 48297184 48456369 48606787 48746693 48874539 49779440 50004441
Luxembourg 444050.0 448300 451600 455000 469086 476187 483799 493500 502066 511840 524853
Mexico 101826249.0 103039964 104213503 103001871 103946866 104874282 105790725 106682518 107550697 108396211 115682867
Netherlands 16105285.0 16192572 16258032 16305526 16334210 16357992 16405399 16485787 16574989 16655799 16730348
New Zealand 3939130.0 4009200 4062500 4100570 4139470 4228280 4268880 4315840 4367740 4405150 4433100
Norway 4524066.0 4552252 4577457 4606363 4640219 4681134 4737171 4799252 4858199 4920305 4985870
Poland 38632453.0 38218531 38190608 38173835 38157055 38125479 38115641 38135876 38167329 38200037 38538447
Portugal 10335559.0 10407465 10474685 10529255 10569592 10599095 10617575 10627250 10637713 10636979 10542398
Slovak Republic 5378951.0 5379161 5380053 5384822 5389180 5393637 5400998 5412254 5424925 5435273 5404322
Spain 40409330.0 41550584 42345342 43038035 43758250 44474631 45283259 45828172 45989016 46152926 46818221
Sweden 8909128.0 8940788 8975670 9011392 9047752 9113257 9182927 9256347 9340682 9415570 9482855
Switzerland 7261210.0 7313853 7364148 7415102 7459128 7508739 7593494 7701856 7785806 7870134 7954662
Turkey NaN 70171979 70689500 71607500 72519974 72519974 70586256 71517100 72561312 73722988 74724269
United Kingdom 58706905.0 59262057 59699828 60059858 60412870 60781346 61179260 61595094 62026962 62498612 63256154
United States 277244916.0 288774226 290810719 294442683 297308143 300184434 304846731 305127551 307756577 309989078 312232049
            population            .            to_csv            (            "/data1/countries_total_population.csv"            )          

We want to create a new DataFrame with all the information, i.e. female person, male and consummate population. This means that nosotros have to innovate an hierarchical index. Before we exercise it on our DataFrame, nosotros will introduce this problem in a simple instance:

              import              pandas              every bit              pd              shop1              =              {              "foo"              :{              2010              :              23              ,              2011              :              25              },              "bar"              :{              2010              :              xiii              ,              2011              :              29              }}              shop2              =              {              "foo"              :{              2010              :              223              ,              2011              :              225              },              "bar"              :{              2010              :              213              ,              2011              :              229              }}              shop1              =              pd              .              DataFrame              (              shop1              )              shop2              =              pd              .              DataFrame              (              shop2              )              both_shops              =              shop1              +              shop2              print              (              "Sales of shop1:              \n              "              ,              shop1              )              print              (              "              \n              Sales of both shops              \n              "              ,              both_shops              )            

OUTPUT:

Sales of shop1:        foo  bar 2010   23   13 2011   25   29  Sales of both shops        foo  bar 2010  246  226 2011  250  258            
              shops              =              pd              .              concat              ([              shop1              ,              shop2              ],              keys              =              [              "i"              ,              "two"              ])              shops            
foo bar
i 2010 23 13
2011 25 29
ii 2010 223 213
2011 225 229

We want to swap the hierarchical indices. For this we will utilise 'swaplevel':

              shops              .              swaplevel              ()              shops              .              sort_index              (              inplace              =              True              )              shops            
foo bar
one 2010 23 13
2011 25 29
two 2010 223 213
2011 225 229

Nosotros will get back to our initial problem with the population figures. We will apply the same steps to those DataFrames:

              pop_complete              =              pd              .              concat              ([              population              .              T              ,              male_pop              .              T              ,              female_pop              .              T              ],              keys              =              [              "total"              ,              "male person"              ,              "female"              ])              df              =              pop_complete              .              swaplevel              ()              df              .              sort_index              (              inplace              =              True              )              df              [[              "Austria"              ,              "Australia"              ,              "French republic"              ]]            
State Republic of austria Australia France
2002 female person 4179743.0 9887846.0 30510073.0
male 3959567.0 9753133.0 28827658.0
total 8139310.0 19640979.0 59337731.0
2003 female 4158169.0 9999199.0 30655533.0
male 3909120.0 9873447.0 28974588.0
total 8067289.0 19872646.0 59630121.0
2004 female person 4190297.0 10100991.0 30789154.0
male person 3949825.0 9990513.0 29111526.0
total 8140122.0 20091504.0 59900680.0
2005 female 4220228.0 10218321.0 32147490.0
male person 3986296.0 10121438.0 30371081.0
total 8206524.0 20339759.0 62518571.0
2006 female 4246571.0 10348070.0 32390087.0
male person 4019354.0 10257418.0 30608686.0
full 8265925.0 20605488.0 62998773.0
2007 female 4261752.0 10570420.0 32587979.0
male 4037171.0 10444622.0 30804161.0
total 8298923.0 21015042.0 63392140.0
2008 female person 4277716.0 10770864.0 32770860.0
male 4054214.0 10660917.0 30982280.0
total 8331930.0 21431781.0 63753140.0
2009 female 4287213.0 10986535.0 33208315.0
male 4068047.0 10888385.0 31158647.0
full 8355260.0 21874920.0 64366962.0
2010 female person 4296197.0 11218144.0 33384930.0
male 4079093.0 11124254.0 31331380.0
total 8375290.0 22342398.0 64716310.0
2011 female person 4308915.0 11359807.0 33598633.0
male 4095337.0 11260747.0 31531113.0
full 8404252.0 22620554.0 65129746.0
2012 female person 4324983.0 11402769.0 33723892.0
male 4118035.0 11280804.0 31670391.0
total 8443018.0 22683573.0 65394283.0
            df            .            to_csv            (            "/data1/countries_total_population.csv"            )          

Live Python training

instructor-led training course

Upcoming online Courses

Enrol here

Do 2

  • Read in the dsv file (csv) bundeslaender.txt. Create a new file with the columns 'land', 'area', 'female', 'male', 'population' and 'density' (inhabitants per square kilometres.
  • print out the rows where the expanse is greater than 30000 and the population is greater than 10000
  • Print the rows where the density is greater than 300
              lands              =              pd              .              read_csv              (              '/data1/bundeslaender.txt'              ,              sep              =              " "              )              print              (              lands              .              columns              .              values              )            

OUTPUT:

['land' 'area' 'male' 'female']            
              # swap the columns of our DataFrame:              lands              =              lands              .              reindex              (              columns              =              [              'land'              ,              'expanse'              ,              'female'              ,              'male person'              ])              lands              [:              2              ]            
land expanse female person male person
0 Baden-Württemberg 35751.65 5465 5271
one Bayern 70551.57 6366 6103
            lands            .            insert            (            loc            =            len            (            lands            .            columns            ),            column            =            'population'            ,            value            =            lands            [            'female person'            ]            +            lands            [            'male'            ])          
land area female male person population
0 Baden-Württemberg 35751.65 5465 5271 10736
ane Bayern 70551.57 6366 6103 12469
2 Berlin 891.85 1736 1660 3396
              lands              .              insert              (              loc              =              len              (              lands              .              columns              ),              column              =              'density'              ,              value              =              (              lands              [              'population'              ]              *              1000              /              lands              [              'area'              ])              .              circular              (              0              ))              lands              [:              iv              ]            
land area female male population density
0 Baden-Württemberg 35751.65 5465 5271 10736 300.0
1 Bayern 70551.57 6366 6103 12469 177.0
2 Berlin 891.85 1736 1660 3396 3808.0
3 Brandenburg 29478.61 1293 1267 2560 87.0
              print              (              lands              .              loc              [(              lands              .              expanse              >              30000              )              &              (              lands              .              population              >              10000              )])            

OUTPUT:

              land      surface area  female  male  population  density 0    Baden-Württemberg  35751.65    5465  5271       10736    300.0 1               Bayern  70551.57    6366  6103       12469    177.0 9  Nordrhein-Westfalen  34085.29    9261  8797       18058    530.0            

Reading and Writing Excel Files

It is also possible to read and write Microsoft Excel files. The Pandas functionalities to read and write Excel files use the modules 'xlrd' and 'openpyxl'. These modules are not automatically installed by Pandas, so yous may take to install them manually!

We will use a uncomplicated Excel document to demonstrate the reading capabilities of Pandas. The certificate sales.xls contains two sheets, one called 'week1' and the other one 'week2'.
An Excel file can be read in with the Pandas part "read_excel". This is demonstrated in the following example Python code:

              excel_file              =              pd              .              ExcelFile              (              "/data1/sales.xls"              )              sheet              =              pd              .              read_excel              (              excel_file              )              sheet            
Weekday Sales
0 Mon 123432.980000
1 Tuesday 122198.650200
2 Wednesday 134418.515220
3 Thursday 131730.144916
4 Fri 128173.431003

The document "sales.xls" contains two sheets, but we only have been able to read in the first i with "read_excel". A consummate Excel document, which can consist of an arbitrary number of sheets, can exist completely read in like this:

              docu              =              {}              for              sheet_name              in              excel_file              .              sheet_names              :              docu              [              sheet_name              ]              =              excel_file              .              parse              (              sheet_name              )              for              sheet_name              in              docu              :              impress              (              "              \north              "              +              sheet_name              +              ":              \n              "              ,              docu              [              sheet_name              ])            

OUTPUT:

week1:       Weekday          Sales 0     Mon  123432.980000 i    Tuesday  122198.650200 2  Midweek  134418.515220 3   Thursday  131730.144916 4     Friday  128173.431003  week2:       Weekday          Sales 0     Monday  223277.980000 one    Tuesday  234441.879000 2  Wednesday  246163.972950 3   Thursday  241240.693491 four     Fri  230143.621590            

We will calculate now the avarage sales numbers of the two weeks:

              boilerplate              =              docu              [              "week1"              ]              .              re-create              ()              average              [              "Sales"              ]              =              (              docu              [              "week1"              ][              "Sales"              ]              +              docu              [              "week2"              ][              "Sales"              ])              /              2              print              (              average              )            

OUTPUT:

              Weekday          Sales 0     Monday  173355.480000 i    Tuesday  178320.264600 2  Midweek  190291.244085 iii   Thursday  186485.419203 4     Friday  179158.526297            

We volition save the DataFrame 'average' in a new document with 'week1' and 'week2' as additional sheets also:

            writer            =            pd            .            ExcelWriter            (            '/data1/sales_average.xlsx'            )            document            [            'week1'            ]            .            to_excel            (            writer            ,            'week1'            )            document            [            'week2'            ]            .            to_excel            (            writer            ,            'week2'            )            average            .            to_excel            (            author            ,            'average'            )            writer            .            salvage            ()            writer            .            close            ()          

Sales_average LibreOffice

Live Python grooming

instructor-led training course

Upcoming online Courses

Enrol here

garciaemeorms.blogspot.com

Source: https://python-course.eu/numerical-programming/reading-and-writing-data-in-pandas.php

0 Response to "Panda Isnot Reading All of the Entries in Column Reading Csv File Python"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel